Simultaneous Ranking and Clustering of Sentences: A Reinforcement Approach to Multi-Document Summarization

نویسندگان

  • Xiaoyan Cai
  • Wenjie Li
  • Ouyang You
  • Hong Yan
چکیده

Multi-document summarization aims to produce a concise summary that contains salient information from a set of source documents. In this field, sentence ranking has hitherto been the issue of most concern. Since documents often cover a number of topic themes with each theme represented by a cluster of highly related sentences, sentence clustering was recently explored in the literature in order to provide more informative summaries. Existing clusterbased ranking approaches applied clustering and ranking in isolation. As a result, the ranking performance will be inevitably influenced by the clustering result. In this paper, we propose a reinforcement approach that tightly integrates ranking and clustering by mutually and simultaneously updating each other so that the performance of both can be improved. Experimental results on the DUC datasets demonstrate its effectiveness and robustness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A survey on Automatic Text Summarization

Text summarization endeavors to produce a summary version of a text, while maintaining the original ideas. The textual content on the web, in particular, is growing at an exponential rate. The ability to decipher through such massive amount of data, in order to extract the useful information, is a major undertaking and requires an automatic mechanism to aid with the extant repository of informa...

متن کامل

Graph-based models for multi-document summarization

University of Ljubljana Faculty of Computer and Information Science Ercan Canhasi Graph-based models for multi-document summarization is thesis is about automatic document summarization, with experimental results on general, query, update and comparative multi-document summarization (MDS). We describe prior work and our own improvements on some important aspects of a summarization system, incl...

متن کامل

Ranking With Cluster-Based Non-Segregated Approach to Multi-Document Categorization

To summarization of one or more document aims to create a strong summary while retaining the main characteristics of the original set of documents. To cover a number of topic with each theme represented by a cluster of highly related sentences. Sentence clustering is used, it directly generates clusters integrated with ranking. Ranking distribution for sentence in each and every cluster is diff...

متن کامل

Applying two-level reinforcement ranking in query-oriented multidocument summarization

Sentence ranking is the issue of most concern in document summarization today. While traditional featurebased approaches evaluate sentence significance and rank the sentences relying on the features that are particularly designed to characterize the different aspects of the individual sentences, the newly emerging graphbased ranking algorithms (such as the PageRank-like algorithms) recursively ...

متن کامل

Towards an Iterative Reinforcement Approach for Simultaneous Document Summarization and Keyword Extraction

Though both document summarization and keyword extraction aim to extract concise representations from documents, these two tasks have usually been investigated independently. This paper proposes a novel iterative reinforcement approach to simultaneously extracting summary and keywords from single document under the assumption that the summary and keywords of a document can be mutually boosted. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010